Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube
نویسندگان
چکیده
We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.
منابع مشابه
Topological aspects of graphene Dirac fermions and the bulk-edge correspondence in magnetic fields
We discuss topological aspects of electronic properties of graphene, including edge effects, with the tight-binding model on a honeycomb lattice and its extensions to show the following: (i) Appearance of the pair of massless Dirac dispersions, which is the origin of anomalous properties including a peculiar quantum Hall effect (QHE), is not accidental to honeycomb, but is rather generic for a ...
متن کاملQuantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures.
Topological insulators are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to topological insulator-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. Here we establish the potential existence of topological proximity...
متن کاملSpin-orbit effects in a graphene bipolar pn junction
A graphene pn junction is studied theoretically in the presence of both intrinsic and Rashba spin-orbit couplings. We show that a crossover from perfect reflection to perfect transmission is achieved at normal incidence by tuning perpendicular electric field. By further studying angular dependent transmission, we demonstrate that perfect reflection at normal incidence can be clearly distinguish...
متن کاملControlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for high performing FETs
Two dimensional van der Waals heterostructures have shown promise in electronic device applications because of their high charge carrier mobility, large surface area and large spin conductance value. However, it still remains a great challenge to design heterolayers with an electric field driven tunable electronic bandgap and stable geometry to obtain high electron mobility. Motivated by the in...
متن کاملQuantum anomalous Hall effect in graphene coupled to skyrmions
Skyrmions are topologically protected spin textures, characterized by a topological winding number N , that occur spontaneously in some magnetic materials. Recent experiments have demonstrated the capability to grow graphene on top Fe/Ir, a system that exhibits a two-dimensional skyrmion lattice. Here we show that a weak exchange coupling between the Dirac electrons in graphene and a two-dimens...
متن کامل